
Documentation for the Package tobiShell.sty

Tobias Nähring

April 8, 2007

Contents

1 Introduction 1

2 Installation 1

3 Usage 1

3.1 Most simple usage – the bash-shell . 1

3.2 Running other commands . 2

3.3 Changing the defaults . 3

1 Introduction

The package tobiShell.sty1 allows to include script files for external programs within LATEX documents.
Inlined code is written to temporary files and the external program is called with the file name of the script
as the last command line argument.

The default external program is the bash-shell. You may easily change the default program (e.g. to gnuplot)
or specify some other executable for some given inline script.

The package has been written and tested for Linux. Maybe, with some modifications it runs also under other
operating systems.

2 Installation

Copy tobiShell.sty to some place where LATEX finds it. A good location is your personal texmf tree
(e.g. ~/texmf/tex/latex/tobiShell.sty).

For security reasons TEX does not run external programs from input files by default. This behavior can be
changed by setting the variable shell_escape in /etc/texmf/texmf.cnf to t. You should not do so because
of it is a security risk! It enables also mailware possibly hidden in some down-loaded TEX document.

It is better to enable the execution of external commands with the help of the TEX command line option
--shell-escape (see section 3) only for safe LATEX input files (i.e. input files you have written or at least
inspected by yourself).

3 Usage

3.1 Most simple usage – the bash-shell

The most simple application of the package is to embed a bash shell script into your LATEX document. Just
write the shell script between the command sequences \bShell and \eShell in your LATEX-source. When
comiling the LATEX-source pass the command line option --shell-escape to LATEX to enable the execution
of external commands. (Once more the advice to apply this command line option only with trustworthy
LATEX-sources.)

1The prefix tobi has been chosen to make the package name unique. There are just too many files named shell.tex in the

net.

1

LATEX will save the lines between \bShell and \eShell to a file named shEsc.tmp (by default) and send it
to the shell.

Bash script example For an example let us write the current directory contents into some file ls.output

from within a LATEX-document. The code for this end is just:

\bShell

ls > ls.output

\eShell

You can easily include the output of the command into your LATEX-source via

\input{./ls.output}

On my computer this results to: auto defaults.gp errfct.eps gnuplot.tmp home.html home.html~

ls.output mex.pstex pari.tex shEsc.tmp sinc.eps test.gp test.pstex tmp.tex tobiShell.aux

tobiShell.dvi tobiShell.log tobiShell.pdf tobiShell.ps tobiShell.tex tobiShell.tex~

tobiShell.toc

If something goes wrong (e.g. you didn’t issue the --shell-escape command line option) LATEX will complain
about the missing input file ls.output. This is fine if you take it as an error message. If you prefer LATEX to
run smoothly and to embed an error message into the LATEX-document you can use the native LATEX-macro
\IfFileExists as demonstrated in the following example.

\IfFileExists{./ls.output}

{%%% then branch %%%

\catcode‘_=11 % underscores occur often in file names

\input{./ls.output}

}{%%% else branch %%%

The file \texttt{ls.output} has not been generated.

Maybe you did not pass the command line option

\texttt{--shell-escape} to \LaTeX.

}

3.2 Running other commands

Other commands than the bash shell can be used. For an example, we will apply the Linux command sort to
some lines of text. The command to be used can be passed to \bShell by an optional argument in brackets.
This argument is then completed by the name of the temporary script file (by default shEsc.tmp) containing
the text between \bShell[...] and \eShell.

\bShell[sort -o tmp.tex]

the

quick

brown

fox

jumps

over

a

lazy

dog

\eShell

Below the shell script the outcome of the command can be included into the LATEX-document via:

\input{./tmp.tex}

The result is in this example2:

2The \obeylines macro has been used to preserve the newlines.

2

a

brown

dog

fox

jumps

lazy

over

quick

the

Some programs produce TEX-output that can directly be read in by LATEX. As an example we use Gnu-Pari
to derive the power series of sin(x)/x:

\bShell[gp -q -f <]

system("rm -f pari.tex");

writetex("pari.tex",precision(sin(x)/x,10));

quit;

\eShell

\begin{equation}

\input{./pari.tex}

\end{equation}

and get

1 −

1

6
x2 +

1

120
x4

−

1

5040
x6 +

1

362880
x8 + O(x10) (1)

Note, the character ’<’ in the optional argument to \bShell in this example. The meaning of this character
becomes clear if one considers the completed command line:

gp -q -f < shEsc.tmp

It just redirects the content of the file shEsc.tmp to the standard input of Gnu-pari.

3.3 Changing the defaults

Assume you want to include a lot of graphical function plots into your document and you always use gnuplot

for producing such plots.

Then it makes sense to change the default command from bash to gnuplot with the help of

\def\tobiShellCommand{gnuplot}

or

\renewcommand\tobiShellCommand{gnuplot}

(if you prefer the LATEX-style). Analogously, you can change the name of the generated shell script file from
shEsc.tmp to whatever you like by

\def\tobiShellFileName{SomeFileName.SomeFileNameExtension}

For an example, you can set

\def\tobiShellFileName{gnuplot.tmp}

better indicating that this temporary file is used for gnuplot. After those definitions you can use embedded
gnuplot scripts like the following to produce function plots.

\bShell

set terminal postscript eps

set output "sinc.eps"

plot [x=0:2*pi] sin(x)/x

\eShell

3

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

sin(x)/x

Figure 1: The function plot generated by gnuplot via an embedded script.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-4 -2 0 2 4

1/(1+exp(x))

Figure 2: Function plot generated by gnuplot with default settings.

Below this script you may include the produced eps picture into some figure environment. For the current
example the result is shown in Figure 1.

Sometimes you want to use the same fundamental gnuplot settings for a number of plots. Those
settings can easily be included into the LATEX-file with the help of the LATEX-environment
\begin{filecontents*}...\end{filecontents*} which must be used before the \documentclass

statement. In the following example the default settings are written into a file named ./defaults.gp

\begin{filecontents*}{./defaults.gp}

set style data lines

set grid

set zeroaxis xy

set terminal postscript eps

\end{filecontents*}

The file defaults.gp is then included into the gnuplot scripts via the gnuplot command load as shown in the
following example:

\bShell

load "defaults.gp"

set output "errfct.eps"

plot [x=-5:5] 1/(1+exp(x))

\eShell

The resulting plot is represented in Figure 2.

4

sin(πx)

e · exp
(

−1

1−x
2

)

x

y

10.50-0.5-1

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

Figure 3: Using the pslatex driver of gnuplot

In the last example with the following inline script the pslatex driver of gnuplot is used which allows labeling
of curves with LATEX text (see Figure 3).

\bShell[gnuplot]

set term pslatex norotate

set output "mex.pstex"

f(x)=exp(-1/(1-x*x))

set lmargin 0

set xlabel "x"

set ylabel "y"

set key bottom spacing 2

plot [x=-1:1] f(x)/f(0) title \

"$e\\cdot\\exp\\left(\\frac{-1}{1-x^{2}}\\right)$", \

sin(pi*x) title "$\\sin(\\pi x)$

\eShell%

5

