
Documentation of ‘pst-bezier.tex’

Tobias Nähring

www.tn-home.de

September 12, 2004

Contents

1 Introduction 1

2 Installation and usage of pst-bezier.tex 2

3 The \bcurve macro 2

4 Things that do not work (‘known bugs’) 7

1 Introduction

The pstricks package provides (essentially) two main macros for drawing
curves: \pscurve and \psbezier. Both macros employ Bezier splines.

The \pscurve macro takes multiple interpolated points as arguments. Thus,
it is easy to draw long multiply bent curves. The problem with \pscurve is
that there is no easy way1 to change the automatically computed control points
without simultaneously changing the interpolated points.

The \psbezier macro gives full control over the interpolation points and
the control points of one Bezier polynominal of degree three (two interpolated
points and two control points).

If one demands for the access to certain control points of one multiply bent
curve one has to use multiple instances of the \psbezier macro. With this
approache each inner interpolation point of the curve has to be input twice.
Furthermore, if one needs smooth joints one has to compute control points
symmetrically to the corresponding interpolation points for every joint even if
one does not care so much about the exact tangential direction at some of those
joints. That can be rather tedious.

The \bcurve macro of pst-bezier.sty is intented to demonstrate a way to
combine the nice properties of the macros \pscurve and \psbezier. It provides
an easy input format to describe ‘arbitrarily’ many interpolation points of a
curve and to fix the control points at some freely selected interpolation points.

1Note that some control is possible via the curvature option.

1



Note, that pst-bezier.sty is no final package (e.g. the automatical
computation of the control points is not as refined as that one for the macro
\pscurve). To emphase that, the macro \bcurve does not fit into the name
conventions of pstricks. I would be pleased if the features of pst-bezier.tex
could be implemented into pstricks-add.tex. But, because of lack of spare
time, I cannot promise to do any further work on that project.

2 Installation and usage of pst-bezier.tex

Installation: As prerequisites for pst-bezier you need resent working ver-
sions of LATEX and pstricks. The files pst-bezier.tex and pst-bezier.sty

must be somewhere in your TEX-input path. Further more, the file pst-bezier.pro
must be in some path, where dvips can find it.

Usage: As usual, load the packages pstricks and pst-bezier in that order
via the \usepackage macro.

Now you are ready to use the \bcurve macro within your document body.
This macro is described in the next section with all its options.

Whith the following simple LATEX-source code you can test whether you have
correctly installed the package:

\documentclass{minimal}

\usepackage{pstricks}

\usepackage{pst-bezier}

\begin{document}

\begin{pspicture}(6,4)

\bcurve(1,2)(5,2) % Draw just one straight line.

\end{pspicture}

\end{document}

3 The \bcurve macro

In the most simple form you can specify any number of interpolation points as
the argument of \bcurve.

\bcurve(1,1)(2,2)(3,1)(4,2)

0 1 2 3 4 5
0

1

2

3

2



As usual, options can be specified within brackets.

\bcurve[showpoints=true]%

(1,1)(2,2)(3,1)(4,2)

0 1 2 3 4 5
0

1

2

3

��

���

���

��

As you can see in the above example, the showpoints feature works (partially)
with bcurve.

The next figure shows again the curve from the first example. This time
labels are added to the points (this is just for the following description, it is not
a feature of \bcurve).

0 1 2 3 4 5
0

1

2

3

��

���

���

��

~p0 = ~l1

~r1 ~p1
~l2

~r2 ~p2 ~l3

~r3 = ~p3

The points labelled with ~pk (k = 0, . . . , 3) are the interpolation points, these

ones labelled with ~l1, . . . ,~l3, and these ones labelled with ~r1, . . . , ~r3 are the left
and right control points, respectively.

Between each consecutive pair ~pk−1, ~pk of interpolation points the \bcurve

macro draws a cubic Bezier spline. The control points ~lk and ~rk determine
the tangential direction of the bezier spline at the interpolation points. More
exactly, the bezier spline from ~pk−1 to ~pk is tangent to the vector ~lk − ~pk−1 at
the point ~pk−1 and tantengial to the vektor ~rk − ~pk at the point ~pk.

Without any optional modifier arguments (described later in this text) the
control points are computed automatically from the interpolation points by the

3



formulas2

~l1 = ~p0

~lk = tk(~pk − ~pk−2) for k = 2, . . . , n

~rk = tk(~pk−1 − ~pk+1) for k = 1, . . . , n − 1

~rn = ~pn

where tk (k = 1, . . . , n) are real coefficients which are called tension and which
default to the value bcurveTension = 0.25.

You can change the appearance of the curve by several modifiers. First of all
you can directly set the left and right control points via the modifiers l(x,y )

and r(x,y ), resp., as shown in the next two examples. The unmodified curve
is drawn in the background in blue color.

\psset{showpoints=true}

\bcurve(1,1)l(2,1)%

(2,2)(3,1)r(4,1)(4,2)

0 1 2 3 4 5
0

1

2

3

��

���

���

��

�

����

���

��

~l1 ~r3

\bcurve(1,1)%

(2,2)l(2,1)(3,1)(4,2)

0 1 2 3 4 5
0

1

2

3

��

���

���

��

��

����

��

��

~l2

2Note that this method is very crude. To compute the curve such that the curvature is

continuous would require solving a nonlinear system of equations. That is not implemented

yet.

4



On the right hand side the last exam-
ple is shown once more without grid
and with showpoints=false. There,
you see that there is a corner at the
second interpolation point.

If you change some left control point ~lk with the help of the L(x,y ) mod-

ifier then the control point ~rk−1 is set symmetrically to ~lk with respect to the
interpolation point ~pk−1. In that way you get a smooth joint as demonstrated
in the next example.

\bcurve(1,1)%

(2,2)L(2,1)(3,1)(4,2)

0 1 2 3 4 5
0

1

2

3

��

����

�

�

��

~l2

~p1

~r1

With the t{t } modifier you can change the tension of the automatically
computed control points of the current Bezier spline.

\bcurve(1,1)%

(2,2)t{0.5}(3,1)(4,2)

0 1 2 3 4 5
0

1

2

3

��

���

���

��

��

���

���

��

As you can see from the example both control points of the current spline
are affected by the t{t } modifier.

If you want to change the tension of just the left or right control point you
can use the tl{t } or tr{t } modifier, respectively, as demonstrated in the fol-
lowing two examples.

5



\bcurve(1,1)%

(2,2)tl{0.5}(3,1)(4,2)

0 1 2 3 4 5
0

1

2

3

��

���

���

��

��

���

���

��

\bcurve(1,1)%

(2,2)tr{0.5}(3,1)(4,2)

0 1 2 3 4 5
0

1

2

3

��

���

���

��

��

���

���

��

The ts{t } modifier changes the tension of the left and right control points
next to the interpolation point which stands in front of the modifier. In the
next example a negative tension value leads to a rather surprising effect.

\bcurve(1,1)%

(2,2)ts{-0.5}(3,1)(4,2)

0 1 2 3 4 5
0

1

2

3

��

���

���

��

��

���

� � �

��

The default value of the tension can be set with the option bcurveTension

as in the following example.

\bcurve[bcurveTension=0.5]%

(1,1)(2,2)(3,1)(4,2)

0 1 2 3 4 5
0

1

2

3

��

���

���

��

��

���

���

��

6



You can set this option also with the help of the \psset macro.
It is even possible to change the value of bcurveTension in the middle of a

bcurve. Just use the modifier T{t } for that purpose as shown in the following
example.

\bcurve(1,1)(2,2)(3,1)(4,2)%

T{0.5}(4,4)(3,5)(2,4)(1,5)

0 1 2 3 4 5
0

1

2

3

4

5

6

��

����������

�

�

�

�

�

�

���

���

��

��

� � �

� � �

�

�

�

�

�

�

���

���

��

Certainly, you can use the T{t } modifier several times in one curve. (Try it
for yourself.)

The linestyle and fillstyle options (and several more) are respected by
\bcurve as the following example shows.

\bcurve[linestyle=dashed,%

linewidth=3pt,%

dash=0.5 0.2,%

fillstyle=solid,%

fillcolor=blue](1,1)%

(2,2)(3,1)(4,2)

\endpspicture

0 1 2 3 4 5
0

1

2

3

4 Things that do not work (‘known bugs’)

As already mentioned this project is something like an experiment. So, there
are many things that do not work.

7



• Newlines inside the argument list are not ignored.

• The control points are computed in a rather crude way (see above). The
curvature option is not recognised.

• If fillstyle is set to solid and showpoints to true then the fill color
covers the interpolation and control points.

• Arrowheads do not work.

8


