Short introduction to PSTricks
Tobias Nihring

February 22, 2005

This presentation was held in German at the TEX-user-meeting Dresden
(Germany) at June 12, 2004 (see also http://www.carstenvogel.de).

The slides are shown here in a scaled-down version with minor changes and
some explanations are added.

PSTricks is well suited to draw simple vector graphics inside of IATEX
documents. The basic syntax of PSTricks is quite similar to that one of the
picture environment native to IXTEX but the macros of PSTricks are in general
much more comfortable and powerful.

Even if PSTricks is rather powerful it should be emphasised that every
program should be used for the task it is designed for. For an example, if you
want to construct complicated realistic three-dimensional scenes you should
better use some ray tracer!/ (e.g. the freely available ray tracer povray).

L ..even if less complicated three-dimensional scenes can be visualized with the help of
the PSTricksadd-on vue3d

1-1

1 Sources

e http://www.tug.org/applications/PSTricks/
Many, many examples. (Learning by doing.)

e http://www.pstricks.de/
Ditto.

e http://www.pstricks.de/docs.phtml
PSTricks user guide: as one PDF, PSTricks quick reference card

e Elke & Michael Niedermair, IATEX Praxisbuch, 2004, Franzis-Verlag,
(Studienausgabe fiir 20€)

The original documentation of PSTricks written by Timothy van Zandt
(the author of the base packages of PSTricks) is 100 pages long. Documenta-
tions of add-ons for pstricks cover again hundreds of pages.

From that fact, it is clear that this short presentation can only cover very
few aspects of the PSTricks package. So, the first slide gives some sources of
informations about the PSTricks-package.

The intention of this presentation is to give an impression of what is pos-
sible with the basic PSTricks-packages and to encourage interested people to
give PSTricks a try.

Contents

1 Sources 2
2 First example‘ 7
3 Important tool: The grid 8
4 Setting options 9
5 Star versions of objects 10
6 Further basic geometric objects 11
7 Line ends ‘Arrows’ 12
3
8 File plots 13
9 Function plots (parametric) 14
10 Placing whatever, wherever 15
11 Clipping and scaling 16
12 Easy way to scale everything\ 17
13 Enrolling one’s own path 18
14 Repetition (and rgbcolors)‘ 19
15 Special coordinates (e.g. polar coordinates)\ 20

16 Special coordinates (postscript)‘ 21
17 Example for the usage of (LA)TEX-commands 22
18 Importing eps-files 23
19 Nodes and node connections 24
20 ‘Labeling’ node connections 25
21 More nodes and node connections 26
22 Node placement with psmatrix 27
23 Including postscript code in \pscustonﬂ 28
5
24 The corresponding postscript codes 29
25 psdpdf: Preparing the BTEX-file 30
26 psdpdf: pstricks & pdflatex 31
27 Other nice stuff — fillstvle=gradient\ 32
28 Other nice stuff — Playing with Text 33

6-1

At first, some geometric objects of PSTricks are presented followed by some
macros for the modification of these objects. This includes function plots and
embedded eps figures.

Then, the power of the PSTricks-constructs called ‘nodes’ and ‘node con-
nections’ are demonstrated with the help of some examples.

After that, the usage of PDFIXTEX for documents with PSTricks-pictures
is discussed.

At last, two slides with other nice stuff of PSTricks are shown.

Pieces of embedded Postscript fragments throughout the presentation show
the close relation of PSTricks with the Postscript language.

Some basic knowledge is advantageous when using PSTricks but many
things are also possible without such knowledge.

2 First example

\documentclass{article}
\usepackage{pstricks}
\begin{document}
\begin{figure}

\begin{pspicture}(4,5)
\psframe(0.7,2)(3.3,3)
\rput(2,2.5){First Example}

\end{pspicture}

First Example

\end{figure}
\end{document}
pspictures can replace simple eps-figures.

To use PSTricks macros in IXTEX at least the style file pstricks.sty must
be loaded. The basic PSTricks package has many more style files for various
tasks. If you do not mind processing time then you can load all these files with
the command \usepackage{pst-all} instead of \usepackage{pstricks}.

With the \psframe macro above the rectangle in the picture is drawn.
PSTricks macros such as \psframe do not modify the current I4TEX position.
If there is no extra space is reserved for the PSTricks objects then the following
ITEX Text overwrites the objects as it is demonstrated here.

The task of reserving space for the PSTricks pictures is accomplished by
the pspicture environment. In the form above the coordinate pair (4,5) in
\begin{pspicture} (4,5) stands for the width and the height of the PSTricks
picture. By default lengths are measured in centimetres.

The pairs of numbers in the parentheses following the \psframe macro are
the coordinates of the lower left and the upper right corners of the rectangle.

The most simple form of the \rput macro used above works very much
like the \put macro of the #TEX picture environment. Later we will see that
the \rput macro is the much more powerful one of both.

3 Important tool: The grid
5
\begin{pspicture}(4,5) 4
\psgrid SESSEEEEEEEEEEEEEEEE
« s 3
\end{pspicture} irst Exkamp
2
Globally deactivated via
\let\psgrid\relax 1
in the final version.
0
0 1 2 3 4

One important tool for drawing pictures with pstricks is the grid. It can
be activated with the \psgrid macro. If no further arguments are given in the
\psgrid command it produces a grid with width and height as determined by
the size of the enclosing pspicture.

If one wants all other PSTricks elements in the pspicture drawn onto the
grid one should specify \psgrid at first inside the pspicture environment as
indicated above. On the other side, if one wants the grid drawn onto all the
other stuff in the pspicture one should specify the grid as the last thing in the
pspicture environment.

To remove all grids in the final document one can simply deactivate all the
\psgrid commands in the document by the single command \let\psgrid\relax
at the beginning of the document.

4 Setting options

\psset{gridcolor=green,
subgridcolor=yellow} 4

\begin{pspicture}(4,5)

\psframe[linecolor=blue,
fillcolor=red,
fillstyle=solid]
(0.7,2)(3.3,3) 1

\end{pspicture} 0

Many, many options can be set for PSTricks elements. There are two main
ways to do so.

To set the options for all following PSTricks elements inside the scope of
the current group one can use the \psset macro. The options are given as
a coma separated list of key=value pairs. It is admissible to place \psset
macros outside of pspicture environments.

For specifying options for a specific PSTricks element most PSTricks macros
accept optional arguments in brackets as indicated on the slide.

9-1

5 Star versions of objects
5

\begin{pspicturel}(4,5)
\psframe*[linecolor=blue,

(0.7,2)(3.3,3)

\end{pspicture}

N

10

Often one needs just one evenly colorised area. For that purpose most
PSTricks elements have a corresponding star version (Note the red star on
the slide). The area of the star form of a PSTricks element is filled with the
linecolor — regardless of the current setting of the option fillcolor.

10-1

6 Further basic geometric objects

Lines and dots

\psline

\psdots Ellipses,
\pspolygon Circles,
\pscircle Arcs
\psellipse

\psarc Be2|er-SpI|nes/\/
\pscurve e
\psbezier

(interpolated splines)
Exact syntax: pst-usr.pdf/pst-quik.ps

This slide just shows some of the more important geometrical PSTricks
elements.

The interpolated points of the curve and the control points of the Bezier
spline are visible because of the option showpoints is set to true.

For the exact syntax of the corresponding macros the reader is referred to
the PSTricks user guide.

11-1

7 Line ends ‘Arrows’

\psline{-*}(1,6)(2,6)
\psline{-}(3,6) (4,6)
\psline{->}(2.5,5)(2.5,3)
\pscurve{|-1}(1,2)(2.5,1)(4,2)

12

There is a special way to specify the look of the ends of lines, curves, splines
and some other one-dimensional objects. Such ends are called as arrow heads
in the user guide. You can set the shape of the arrow heads in curly braces
just before the coordinate pairs of the points of the PSTricks element. There
are many more arrow heads available in PSTricks than those on the slide.

Using all possibilities to specify options of one-dimensional objects one
ends up with the sequence: 1st options in brackets, 2nd arrow options in
curly braces, 3rd points in parenthesis’l.

Example:

\psline[tbarsize=10pt 5]{|->}(0.5,0.5ex) (\linewidth,0.5ex)

IThanks to Stefan Berthold who pointed out that I should mention that.

12-1

8 File plots

\usepackage{pst-plot}

\psset{xunit=0.3\psunit,yunit=2\psunit}
\psaxes [Dx=5]{->}(0,0) (0,-1) (24,1.5)
\fileplot{bessel.dat}

A
- 1 7]
Contents of the file bessel.dat:
0 1 0 -
0.20202 0.989823
5 10 15 20
0.40404 0.959602 1 4L

13

A further basic PSTricks element is the file plot which is defined in the
style file pst-plot.sty.

With the \fileplot macro data is read from a file (on the slide the file’s
name is bessel.dat). The points from the data file are plotted with lines
connecting consecutive points (the latter behaviour can be changed via the
option plotstyle).

The scale of the plot is determined by the options xunit and yunit. The
origin of the coordinates is the current point (0,0).

The \psaxes macro can be used to provide the plot with axes. The first of
the three coordinate pairs behind \psaxes determines the origin of the coordi-
nate system the second one determines the lower left corner of the coordinate
system and the third the upper right corner (a similar syntax can be used for
the \psgrid macro mentioned above).

13-1

9 Function plots (parametric)

\def\Euler{2.718 }
\parametricplot[plotstyle=curvel {0}{360}{
3 t mul cos \Euler -0.01 t mul exp mul

3 t mul sin \Euler -0.01 t mul exp mul }

(x(t),y(t)) = exp(—0.01¢) - (cos(3t), sin(3t))
with ¢ € [0,360°]

Postscript: Chapter ‘Operators’ in RedBook.pdf by Adobe Inc.

14

Also function plots can be made by PSTricks. For x-y-plots the \psplot
macro may be used. On this slide, however, the more flexible \parametricplot
macro is demonstrated.

The parametric description of the curve to be plotted is shown as the black
formula on the slide (it represents three windings of a logarithmic spiral).

The parameter identifier in parametric plots is always t. The start and the
end of the parameter domain are given inside the first and the second curly
braces, resp., of the \parametricplot macro.

The defining function of the curve is described as a postscript program
fragment inside the third curly braces of the \parametricplot macro.

With the option plotstyle set to curve splines are used to interpolate
the computed samples along the function graph. Without this option points
are connected with line segments. You should try this for yourself to see the
difference.

For an exact description of the Postscript programming language the reader
is referred to the Postscript Language Reference called the Red Book which
can be downloaded from
http://partners.adobe.com/asn/tech/ps/specifications. jsp.

For the moment think of the program segment just as a representation of the
formula in reverse polish notation?.

In postscript fragments expandable IXTEX macros such as \Euler on the
slide may be used. Note the space in the definition of the macro \Euler. This
space is necessary since the space after \Euler in the postscript fragment is
eaten during the IATEX expansion process.

ITodo: This should be explained in some more detail.

14-1

http://partners.adobe.com/asn/tech/ps/specifications.jsp

10 Placing whatever, wherever

\psdots[linecolor=red,dotsize=10pt] > :Centerg\/liddle;
(0,5) (-1,3)(1,2) (0.5,1) : f ﬁ
\rput (0,5){Center,Middle} 4
\rput [bl] (-1,3) {$\underbrace{ .Ebotton:q,left :

\text{bottom,left} 3W

}_{\text{Really!}}$} ; :
\rput [Br] (1,2){$\underbrace{ : :

N
\text{Baseline,right} ?W?

}_{\text{Really!}}$} Really!
\rput [tr]{45}(0.5,1) LR o
{\parbox{5cm}{\flushright Rotated\\ 3 {O
by $45~{\circ}$}} 0: X
10 1
15

Now, that we know some PSTricks elements we can focus on the modifica-
tion of such elements or groups of such elements.

As we have already seen, the \rput macro can be used to place objects.
The second mandatory argument (in curly braces) is the stuff to place the first
mandatory argument (in parenthesis) is the coordinate pair of the point where
the stuff is placed.

Now we turn to the optional arguments of the \rput macro.

The first one is given in brackets. It determines the justification of the
bounding box of the object to place with respect to the point given in paren-
thesis. The admissible values are the same as the values for the option origin
of the \includegraphics macro. For an instance [br] for bottom — right.
The default is mc meaning middle — center.

The second optional argument is given in curly braces just before the left
parenthesis. It is a number that stands for the rotation angle as illustrated in
the last instance of the \rput macro on the slide.

The two optional arguments make \rput more flexible than the \put macro
of the picture environment.

15-1

11 Clipping and scaling

\def\myEye{

\begin{psclip}{\psellipse(0,0)(0.8,1.5)}
\pscirclex*[linecolor=blue] (0,-1){1}
\end{psclip} a P 3
\pspolygon*(-0.4,1.5)(0.7,1.8)
(0.2,2.2)(-0.5,1.6)

}

\rput (8,2) {\myEye}

\rput (6,2){\scalebox{-1 1}{\myEye}}

16

A very important feature provided by Postscript is clipping. Clipping is
also supported by PSTricks. It makes PSTricks even superior to some wysi-
wyg! vector drawing programs.

Clipping requires two arguments firstly a closed path the so called clip path
and secondly the clipped graphics. Only that portion of the clipped graphics
is shown that lies inside the region bounded by the clip path.

PSTricks provides the psclip environment for clipping. The mandatory
argument of the psclip environment in the curly braces is the clip path. The
clipped graphics is written into the psclip environment. On the slide the
blue iris of the eye is drawn as a blue full circle. The visible part of the iris
is cut out via a clip path drawn by a \psellipse macro. Note, that the clip
path is drawn as an ordinary PSTricks element with the current line style
and fill style. If you want to make the clip path invisible you have to set the
linestyle option to none.

A standard feature of drawing programs is scaling. This is provided by
PSTricks through the \scalebox macro. The two numbers in the first argu-
ment of \scalebox are the scaling factors in z- and y-direction. The stuff to
be scaled is put into the second argument.

On the slide we use scaling for reflecting the eye in z-direction?.

IWhat You See Is What You Get.
20ne can also use \reflectbox for this purpose (thanks to Bjoérn).

16-1

12 Easy way to scale everything

\begin{pspicture}(4,5)
\rput (2,2)\myeye
\end{pspicture}
\hspace{1lcm}
\psset{unit=0.75cm}

»

v

01234 01234

\begin{pspicture}(4,5)

O FR, N W~ O
OFRLNW,AO

\rput (2,2)\myeye
\end{pspicture}

17

One could put units (like pt, cm, in) on each measure inside a pspicture
environment. But it is very wise not to do so, since if one uses unit-free
measures the picture keeps scalable.

One can easily change the size of the picture by setting the option unit
to the desired value. None-uniform scaling is also possible with the options
xunit and yunit.

On the slide the default value of 1cm for unit is used for the left picture.
Exactly the same picture is drawn on the right side with unit set to 0.75cm.

17-1

13 Enrolling one’s own path

\psset{linecolor=red,fillcolor=pink,fillstyle=solid}
\rput (0,2){

\pscurve(1,0) (0,-1.0)(-1,0)

\pscurve(-1,0) (0,-0.5) (1,0) ——d
}
\pscustom{ v

\pscurve(1,0) (0,-1.0)(-1,0)
\pscurve[liftpen=1] (-1,0) (0,-0.5) (1,0)

18

With the Postscript language a visible object is created in two steps. In

the first step a path is defined and in the second step some visualisation like

stroking or filling is done with the path. Different geometrical objects can be
used to describe one path. An example is the postscript fragment

0 -50 rlineto
50 0 100 O 100 50 rcurveto
stroke

which defines a path consisting of a line and a bezier curve and afterwards
strikes the path. The result of this Postscript fragment is shown here: -
with stroke replaced by £ill one obtains: -

Normally, PSTricks concludes the postscript fragment corresponding to
a macro like \pscurve immediately with a stroke and/or £ill command
(depending on the linestyle/fillstyle options). Thus, each of the first
two \pscurve commands on the slide fills its own path and one obtains the
upper figure on the slide.

It might be that one just wanted to fill the region between the two curves.
This means that the two curves should belong to the same filled path.

PSTricks defines the \pscustom macro. Inside the argument of this macro
the Postscript fragments belonging to macros like \pscurve/\psline/\psbezier
are not concluded with £ill or stroke. Thus all the objects inside the
\pscustom argument belong to the same path. At the end of the execution of
the \pscustom macro the path is stroked /filled according to the fillstyle/linestyle
options.

The option 1iftpen=1 prevents PSTricks to try to connect the two curves
in some strange manner. Without this option one would obtain something

li kg:

18-1

14 Repetition (and rgbcolors)

\usepackage{pstcol,multido}

\psset{fillstyle=solid,linestyle=none}
\multido{\nx=0.0+0.1}{10}{%
\multido{\ny=0.0+0.1}{10}{%
\newrgbcolor{c}H{\nx} {\ny} 0}%
\rput (\nx, \ny) {%
\psframe [fillcolor=c] (0,0)(0.1,0.1)%

T
\multirput[B1] (0,0.92)(0.084,-0.1){10}{Nice!}

19

The multido style file from the PSTricks package provides the two macros
\multido and \multirput.

The \multido macro allows to repeat some sequence of IXTEX macros a
given number of times. The first argument of the \multido macro contains an
"identifier = initial value + increment’ sequence, the second argument contains
the number of repetitions and the last one contains the IN\TEX commands to
be repeatedly executed.

The first letter in the identifier of the control variable must be a 'n’ for a
real number and an i’ for an integer.

As demonstrated on the slide the \multido macros may be nested.

More than one control variable might be defined in the first argument of
the \multido macro by a coma separated list.

The \multirput macro on the slide produces once a box from the IATEX
code ‘Nice!’ then it places it ten times with initial position (0,0.92) and
increment (0.084,-0.1).

The package pstcol allows to define new RGB-colors with the help of a
macro \newrgbcolor.

The first argument of \newrgbcolor is the name of the new color the
second argument is a space separated triple of numbers which stand for the
red, green, and blue fraction of the newly defined color.

That color can then be used as value for color options like 1inecolor and
fillcolor.

19-1

15 Special coordinates

(e.g. polar coordinates)

\SpecialCoor 4

\rput (2,3){
\psline(0.6;30) (0,0) (0.6;75) /\ A5
\psarc(0,0){0.5}{30}{75} / AN
\rput [bl] (0.6;52.5){$45"{\circ}$} >

’ 2 3

20

Normally, points are specified in Cartesian coordinates written as a coma
separated pair inside of parenthesis. With the \SpecialCoor macro one can
tell PSTricks to recognise other types of coordinates.

For an example polar coordinates are written as a pair of radius and angle
(in degrees) separated by a semicolon.

Polar coordinates are always given with respect to the current origin. If
needed one can move that origin first with the help of the \rput macro (that
is done by the \rput(2,3) on the slide).

20-1

16 Special coordinates (postscript)

3
2 B+C-A
0
-1 A
\Pt A(-1,0)\Pt B(-2,1)\Pt C(3,1) -3-2-101 2 3

% \Pt A(-1,0) -> \A=-1,0 \AX=-1 \AY=0
\pspolygon[fillstyle=solid,fillcolor=yellow] (\B) (\A) (\C)
¢

\BX\space \CX\space add \AX\space sub

\BY\space \CY\space add \AY\space sub

21

One can also use Postscript fragments to compute the Cartesian coordi-
nates of a point. This is determined by the exclamation mark next to the left
parenthesis. On the slide we use a Postscript fragment to compute the fourth
point of a parallelogram.

\Pt is a self-made auxiliary macro to extract the coordinates from a given
pair (it assigns to an argument like A(-1,0) the macros \A, \AX and \AY as
indicated in the comment on the slide).

Note the \space macros in the Postscript fragment. These expand to
spaces which are necessary because of I#TEX eats all spaces behind a macro
name. With \BX=-1 and \CX=3 the sequence ‘\BX \CX add’ would expand to
‘~13add’ instead of the desired ‘-1 3 add’.

21-1

17 Example for the usage of
(LA)TEX-commands

\newcommand\myPairs{(0.3,0.2)(0.7,1.0)%
(1.5,1.1)(1,0.3)}
{\psset{linestyle=dotted,
linewidth=1.5\pslinewidth}
\expandafter\psline\myPairs

\expandafter\psbezier\myPairs

}

22

(This slide should probably be left out.)

In general IXTEX macros can be used together with PSTricks macros.
Thereby, one has to be careful with the argument expansion of PSTricks
macros.

In the example on the slide a sequence of points is used twice and, there-
fore, abbreviated by a macro \myPoints. The \psline macro expects the
coordinates of the polygon section points in parenthesis. Therefore, we have
to expand \myPairs to get the parenthesis before we may expand \psline.
An \expandafter before \psline serves that purpose.

22-1

18 Importing eps-files

\usepackage{graphicx}

\rput (7,-5){%

\includegraphics’
[width=1\1linewidth]l¥%
{graph1.eps}%

23

No special macro is provided by PSTricks to embed pictures into the doc-
ument. This is no problem at all since the graphicx package already provides
the \includegraphics macro that is very well suited for that purpose.

As shown on the slide the \rput macro of PSTricks can help to place figures.
That picture had been created by the function plotting program gnuplot.
The labels a,b,c,d have been placed by gnuplot with their center exactly
at the vertices of the domain of the plotted functions. That is relevant for
the next slide where we will see that PSTricks is a good tool to make certain
modifications in embedded eps pictures.

23-1

19 Nodes and node connections

\usepackage{psfrag,pst-node}

\psfrag{a}[mc] [mc]{\pnode{NodeA}}
\psfrag{b} [mc] [mc]{\pnode{NodeB}}
\includegraphics ...
\ncdiag[angle=-130,

arm=2cm,

linearc=0.25cm]

{NodeA}{NodeB}

\mput*{Ω}

24

Nodes and Node connections are extremely useful tools of PSTricks.

With the help of nodes one can refer to the position of IATEX objects (or
better their Postscript representations) without knowing their exact coordi-
nates.

On the slide the \psfrag macro of the package psfrag.sty has been used
for replacing the labels a,b,c,d (see the figure on the previous slide) with
prnodes. These nodes do not have a geometrical extent (pnode stands for
‘point node’). They just make the label positions available to PSTricks. The
nodes created in that way can then be referred to by the assigned node names
NodeA and NodeB.

In the example on the slide the nodes NodeA and NodeB are connected
by a line (NodeC and NodeD are treated analogously). This connection has
been created by the \ncdiag macro (\ncdiag standing for ‘node connect di-
agonal’). The \ncdiag macro draws arms of arm=2cm length in an angle of
angle=-130 degrees starting from the nodes. The end points of these arms
are then connected by a straight line. The option linearc=0.25cm smoothes
out the resulting vertices at the arm ends by small arcs.

The label €2 is placed in the middle of the node connection by the \mput*
macro. The star form of \mput is used to get the white underlay of the label 2.

24-1

20 ‘Labeling’ node connections

\usepackage{pstricks-add}

\cnodeput (2,1){cnA}{Circle A}
\cnodeput (2.5,4){cnB}{Circle B}
\nccurve [ArrowInside=->,ArrowInsidePos=0.25,
angleA=40,angleB=-50]{cnA}{cnB}
\aput (0.25){W_{12}}
\1lput{:0}{
\psline{->}(0,0)(1,0)
\uput [0]{*0}(1,0) {\mathbf{t}}
\psline{->}(0,0)(0,-1)
\uput [90] {*0}(0,-1) {\mathbf{n}}}

25

There are many different types of nodes. On this slide \cnodeput has
been used to create two circle nodes with inserted text. The curve connect-
ing the cycles is created by the \nccurve macro. The options angleA=40,
angleB=-50 determine the angles at which the curve leaves the circle nodes.

ArrowInside=->, ArrowInsidePos=0.25 are options that were added to
PSTricks after the development of PSTricks had been froze. Such add-ons to
PSTricks are contained in pstricks-add. sty which must be loaded separately.

With help of the ArrowInside=-> option one can set an arrow head any-
where on a curve. The place where to set the arrow head is determined by the
ArrowInsidePos=0.25 option. The curve is parameterised from 0 to 1 and
the 0.25 tells PSTricks to set the arrow head at one quarter of the curve.

The \aput macro is used to put the label ‘W;5’ above the curve at the
curve parameter 0.25 given in parenthesis.

The \1put macro is also intended for labelling. In the example however,
it serves to draw the local coordinate system with the tangent vector t and
the normal vector n. The stuff to be placed is given in the second argument
of \1put. The stuff is rotated by the angle in the first argument of \1lput.
The colon says that the angle is given in local polar coordinates of the curve.
That means the tangent of the curve has an angle of 0 degrees. That makes
the task to draw the tangent and the normal vector of the curve very easy.

The \uput macro is used to label the vectors t and n. The angle in
the brackets determines in which direction the label is translated from the
point given in parenthesis. The argument in the first curly braces determines
the angle by which the label is rotated. The star indicates that the angle is
measured with respect to the global coordinate system. The value 0 leaves the
labels unrotated upright.

25-1

21 More nodes and node connections

\begin{equation*}
\begin{array}{c@{\hspace{3cm}}c}
\Rnode{N1}{X} & \Rnode{N2}{
\times\limits_{i\in I} Y_{i}}\\[3cm]

#\Rnode{N3HY_{j}} X — ey,
\end{array} iel
\psset{nodesep=0.3cm} o
\everypsbox{\scriptstyle} fi=mjof ’
\ncLine{->}{N1}N2}\Aput{f} N

j

\ncLine{->H{N1}{N3}\Bput{f_{j}=\pi_{j}\circ £}
\ncLine{->H{N2}{N3*\Aput{\pi_{j}}
\end{equation*}

26

Another important application of nodes and node connections is the illus-
tration of relationships as, for an example, the commutative diagram on the
slide.

The diagram is embedded into an equation#* environment of AMS-IATEX.
For node placing the I¥TEX native array environment is used. That shows
that nodes and node connections can be used everywhere in a I TEX document.
They are not restricted to pspicture environments.

The \Rnode macro puts a invisible rectangular node with the name its first
argument around the stuff in its second argument. The arrows are drawn by
the \ncLine commands. Labels are attached to the arrows by the \Aput and
\Bput commands. \Aput and \Bput are variants of \aput and \bput which
use default values for the positioning of the labels.

\ncLine is a variant of \ncline which takes care that lines connecting
nodes on the same line are straight horizontal independent of the size of the
stuff inside the nodes.

26-1

22 Node placement with psmatrix

\begin{psmatrix} [mnode=R, colsep=3cm,rowsep=3cm]
X & \bigtimes\limits_{i\in I} Y_{i}\\

&Y_{j} X X Y;
\end{psmatrix} i€l
\psset{nodesep=0.3cm} -
\everypsbox{\scriptstyle} fi=mjof
\ncLine{->}{1,1}{1,2}\Aput{f} v

J

\ncLine{->}{1,1}{2,2}\Bput{f_{jr=\pi_{j*\circ £}
\ncLine{->}{1,2}{2,2 \Aput{\pi_{j}}

27

The same commutative diagram as on the previous slide is created here

via the psmatrix environment of PSTricks. This is an environment especially

designed for node placing.
About each entry of the psmatrix a node is set whose type is determined by

the mnode option of the psmatrix environment (mnode=R stands for \Rnode).

The colsep and rowsep options specify the distances of the nodes.

The node labels of the psmatrix entries are automatically generated as
pairs of row and column numbers.

These labels can then be used with the \ncLine macros.

27-1

23 Including postscript code in \pscustom
\pnode (0.0,-0.6){AA}

\pnode(1,4.1){DC}
\pscurve (AD) (AC) (AB) (AA)

\pscustom[fillcolor=yellow,fillstyle=solid]{
\psline(BC) (BB) (CB)
\coor (BC) (CB)
\code{\AddPairs} % x1 y1l x2 y2 -> (x1+x2) (yl+y2)
\coor (BB)
\code{\SubPairs lineto}

\closepath}

28

We have already seen an example where the fourth point of a parallelogram
has been computed by a Postscript fragment. There the coordinates of the
points had been defined as IXTEX macros \AX,\AY,\BX,\BY,\CX,\CY. The
situation is a bit different when the points are defined as nodes.

The coordinates of nodes are not already known during the IXTEX run but
only when the Postscript file is interpreted.

In the example on the slide nodes are used to draw the curved surface and
the parallelogram has to be computed depending on these nodes.

Inside the pscustom environment (which we have already used to construct
Postscript paths) there are some additional macros available which are in a
certain sense ‘closer’ to the postscript interpreter.

The \coor macro allows to insert! the coordinate pairs of the points given
as its arguments into the Postscript file. Thereby, the points can be specified
in any admissible way of PSTricks, especially as nodes, too.

The \code macro allows to insert Postscript code fragments. Such frag-
ments do the calculations in the example. They are abbreviated as macros
\AddPairs and \SubPairs. The definitions of these macros are given on the
next slide.

The last Postscript fragment is finished with a lineto command which
draws the line from node CB to the just computed point. The special command
\closepath is used to close the parallelogram (The line from the computed
point to the node BC is automatically added).

The \pscustom macro takes care of stroking and filling the path corre-
sponding the the chosen options.

I'More exactly, postscript code is inserted which computes the coordinates.

28-1

24 The corresponding postscript codes

hh x1 y1 x2 y2 -> (x1+x2) (yl+y2)
\def\AddPairs{ exch 4 1 roll add 3 1 roll add exch }

%hox1 y1 x2 y2 > (x1-x2) (y1-y2)
\def\SubPairs{ exch 4 1 roll sub 3 1 roll exch sub exch }

29

These are just the Postscript fragments of the previous example.

29-1

25 ps4pdf: Preparing the BKTpX-file

\documentclass{article}
\usepackage{hyperref,graphicx,ps4pdf}
\PSforPDF{\usepackage{pstricks,pst-plot}}
\begin{document}
\title{Example for the usage of ps4pdf}\maketitle\centering
\PSforPDF{
\begin{pspicture}(-5,-5) (5,5)
\rput (0,0) {\psovalbox{That would be some complicated graphic.}}
\end{pspicture}
}%% End of PSforPDF.
\par\hypertarget{Target}{That’s the target.}
\newpage
\hyperlink{Target}{That’s the link.}
\end{document}

30

PSTricks produces Postscript fragments which are inserted into the final
Postscript file. That means, that IXTEX files with PSTricks macros cannot
directly be translated by pdflatex. On the other side some IMTEX features
are only available by pdflatex.

The package ps4pdf makes it possible to translate I#TEX files with PSTricks
macros via pdflatex.

For the usage of ps4pdf the packages graphicx and ps4pdf must be loaded
and all PSTricks relevant parts of the document must be encapsulated as
arguments of the \PSforPDF macro as shown in the example on the slide.

The next slide explains how to use the IXTEX file with pdflatex.

30-1

26 ps4pdf: pstricks & pdflatex

CTAN: /tex-archive/macros/latex/contrib/ps4pdf/ps4pdf.sty
(needs graphicx, preview, ifpdf, and ifvtex)

dvips ps2pdf
foo.ps

\ 4

foo-pics.pdf

pdflatex

»(foo.pdf

foo.tex

31

Translating a XTEX file foo.tex with PSTricks macros via pdflatex is a
two path process which is shown on the slide.

In the first path (the upper path on the slide) exclusively the pictures are
created in a Postscript file and translated into a PDF file via ps2pdf. The
resulting PDF file should be named foo-pics.pdf.

In the second path foo.tex is translated with pdflatex into foo.pdf. On
this path the pictures from foo-pics.pdf are included into the PDF file.

31-1

27 Other nice stuff — fillstyle=gradient

\usepackage{pst-grad}

\begin{psclip}H{
\psframe[linestyle=none,
fillstyle=gradient,
gradbegin=white,gradend=blue,
gradmidpoint=1,
gradangle=-45](0,0) (5,5)
+
. other stuff ...
\end{psclip}

32

At the end of the presentation there are two slides left with some nice funny
features of PSTricks.

The package pst-grad provides a new fill style named gradient. This
fillstyle allows continuous transitions from one color to another one. The start
color and end the color can be set via the options gradbegin and gradend.
These options can also be set like a color definition, e. g.,
\newrgbcolor{gradbegin}{0.1 0.2 0.3}
where 0.1, 0.2, and 0.3 are the red, the green and the blue color value, resp.

The option gradangle determines the direction in which the color keeps
constant.

The region to be filled is parameterised by values from 0 to 1. The pa-
rameter value set by the gradmidpoint option determines where the color
gradend is taken on. For an example with gradmidpoint=1 the color gradend
is taken on at the end of the filled region, e.g. mm=m, and for the setting
gradmidpoint=0.5 the color is taken on in the middle of the filled region, e. g.
N

32-1

28 Other nice stuff — Playing with Text
3 PWSd yy

A <y
m %
X o
\usepackage{pst-text,pst-char,ae} - X
Y &
& %‘é

e . }
\pstextpath(0,-3ex){\psellipse(0,0) (3,2)}{ & PSIATEX v
\multido{}{6}{ PS\LaTeX{}}}

\psset{fillstyle=gradient,gradbegin=red,gradend=blue}
\rput (0,0){\pscharpath{\fontsize{1.3cm}{1.3cm}\selectfont\LaTeX}}

33

The pst-text style provides the macro \pstextpath. This macro serves to
set text along a curve. The first argument (given in parenthesis) is the position
of the first text from the start of the curve the second argument defines the
curve and the third one is the text to be set along the curve.

The package pst-char provides the macro \pscharpath. With the help
of \pscharpath one can transform the outline of a letter into an ordinary
Postscript path. This Postscript path can then be used in the same way as a
postscript path created by commands like \psframe or \pspolygon. In the
example it has been used to dye the string ITEX with fillstyle=gradient.

The path of characters can only be extracted for outline fonts. Therefore,
you have to load some package which provides an outline font. In the example
on the slide the package ae is used for that reason.

That is it for today. Hope you had some fun,
Tobias Nahring

PS: My english not so good. If you find some errors please let me know. My
email-address is: i@tn-home.de.

Thanks to Dominic Hughes (Stanford University) for correcting some spellings.

33-1

	Sources
	First example
	Important tool: The grid
	Setting options
	Star versions of objects
	Further basic geometric objects
	Line ends `Arrows'
	File plots
	Function plots (parametric)
	Placing whatever, wherever
	Clipping and scaling
	Easy way to scale everything
	Enrolling one's own path
	Repetition (and rgbcolors)
	Special coordinates (e.g. polar coordinates)
	Special coordinates (postscript)
	Example for the usage of (LA)TeX-commands
	Importing eps-files
	Nodes and node connections
	`Labeling' node connections
	More nodes and node connections
	Node placement with psmatrix
	Including postscript code in \pscustom
	The corresponding postscript codes
	ps4pdf: Preparing the LaTeX-file
	ps4pdf: pstricks & pdflatex
	Other nice stuff -- fillstyle=gradient
	Other nice stuff -- Playing with Text

